145 research outputs found

    Optimal Control Prediction Method for Control Allocation

    Get PDF
    This paper proposes a novel prediction method for online optimal control allocation that extends the volume of moments achievable with the Moore-Penrose generalized inverse to the entire Attainable Moment Set. This method formulates the control allocation problem using selected basis vectors and associated gains which reduces the optimization problem dimensions and provides physical insight into the resulting optimal solutions. The proposed algorithm finds the entire family of unique optimal control solutions along the desired moment vector from the origin to the boundary of the Attainable Moment Set. Numerical results for the Moore-Penrose prediction method show that the unique minimal controls obtained yield the desired moment with near machine precision accuracy while maintaining control effectors within specified position limits. This method has been fully validated against the unique solution obtained on the boundary of the Attainable Moment Set using the Durham Direct Allocation method. Minimal control solutions obtained for moments in the interior of the Attainable Moment Set, similarly yield the desired moment to near machine precision while providing control solutions that are smaller (i.e. 2-norm) than solutions found with traditional control allocation algorithms (e.g. interior point methods) applied to the minimal control problem. Numerical simulations using a Matlab autocoded executable (MEX) for the representative real world problem of 3-moments with 20 individual control effectors and prescribed control position limits show a mean computation speed of approximately 125 Hz which is sufficient to enable real-time flight allocation

    Affine Generalized Inverse for Optimal Control Allocation

    Get PDF
    This research is a follow on to the "Optimal Control Prediction Method for Control Allocation" paper in which the Prediction Method iterative algorithm was introduced. Previously, the Prediction Method was shown to provide optimal control allocation solutions over the entire Attainable Moment Set for the Moore-Penrose and the generalized (weighted) inverse. As an extension to the Prediction Method, this paper introduces a family of Moore Penrose Affine Generalized Inverses, applicable for all moments, which compute control allocation solutions using a constant matrix and fixed null-space vector. The Moore-Penrose Affine Generalized Inverse is proven to yield equivalent solutions to those of the Prediction Method and therefore is guaranteed to yield Moore-Penrose optimal control allocation solutions. While the Prediction Method is applicable for any moment along an a priori specified moment direction, the Affine Generalized Inverse is shown to yield optimal control allocation solutions in a neighborhood of the given moment which is not restricted to a specified moment direction. Furthermore, the Affine Generalized Inverse is shown to provide the time derivative of optimal control allocation solutions and to facilitate maintaining solutions within control effector rate limitations. The Moore-Penrose Affine Generalized Inverse is broadened to encompass any arbitrary (weighted) Affine Generalized Inverse. Finally, a method of creating a moment lookup table is outlined to utilize the Affine Generalized Inverse as an offline control allocation solution for all moments in the Attainable Moment Set

    Analysis of NASA Common Research Model Dynamic Data

    Get PDF
    Recent NASA Common Research Model (CRM) tests at the Langley National Transonic Facility (NTF) and Ames 11-foot Transonic Wind Tunnel (11-foot TWT) have generated an experimental database for CFD code validation. The database consists of force and moment, surface pressures and wideband wing-root dynamic strain/wing Kulite data from continuous sweep pitch polars. The dynamic data sets, acquired at 12,800 Hz sampling rate, are analyzed in this study to evaluate CRM wing buffet onset and potential CRM wing flow separation

    Effects of Active Sting Damping on Common Research Model Data Quality

    Get PDF
    Recent tests using the Common Research Model (CRM) at the Langley National Transonic Facility (NTF) and the Ames 11-foot Transonic Wind Tunnel (11' TWT) produced large sets of data that have been used to examine the effects of active damping on transonic tunnel aerodynamic data quality. In particular, large statistically significant sets of repeat data demonstrate that the active damping system had no apparent effect on drag, lift and pitching moment repeatability during warm testing conditions, while simultaneously enabling aerodynamic data to be obtained post stall. A small set of cryogenic (high Reynolds number) repeat data was obtained at the NTF and again showed a negligible effect on data repeatability. However, due to a degradation of control power in the active damping system cryogenically, the ability to obtain test data post-stall was not achieved during cryogenic testing. Additionally, comparisons of data repeatability between NTF and 11-ft TWT CRM data led to further (warm) testing at the NTF which demonstrated that for a modest increase in data sampling time, a 2-3 factor improvement in drag, and pitching moment repeatability was readily achieved not related with the active damping system

    In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

    Get PDF
    An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors

    High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development

    Get PDF
    Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility

    An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation

    Get PDF
    This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety

    An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation

    Get PDF
    This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety
    • …
    corecore